Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury
نویسندگان
چکیده
The current therapeutic strategy for the management of acute myocardial infarction (AMI) is to return blood flow into the occluded coronary artery of the heart, a process defined as reperfusion. However, reperfusion itself can increase mortality rates in AMI patients because of cardiac tissue damage and dysfunction, which is termed 'ischaemia/reperfusion (I/R) injury'. Mitochondria play an important role in myocardial I/R injury as disturbance of mitochondrial dynamics, especially excessive mitochondrial fission, is a predominant cause of cardiac dysfunction. Therefore, pharmacological intervention and therapeutic strategies which modulate the mitochondrial dynamics balance during I/R injury could exert great beneficial effects to the I/R heart. This review comprehensively summarizes and discusses the effects of mitochondrial fission inhibitors as well as mitochondrial fusion promoters on cardiac and mitochondrial function during myocardial I/R injury. The comparison of the effects of both compounds given at different time-points during the course of I/R injury (i.e. prior to ischaemia, during ischaemia and at the reperfusion period) are also summarized and discussed. Finally, this review also details important information which may contribute to clinical practices using these drugs to improve the quality of life in AMI patients.
منابع مشابه
New roles for mitochondria in cell death in the reperfused myocardium.
Mitochondria play an important role in regulating the life and death of cells. They provide the cell with energy via oxidative phosphorylation but can quickly turn into death-promoting organelles in response to stress by disrupting adenosine triphosphate synthesis, releasing pro-death proteins, and producing reactive oxygen species. Due to their high-energy requirement, cardiac myocytes are abu...
متن کاملMitochondrial protein kinase Cε (PKCε): emerging role in cardiac protection from ischaemic damage
Mitochondria mediate diverse cellular functions including energy generation and ROS (reactive oxygen species) production and contribute to signal transduction. Mitochondria are also key regulators of cell viability and play a central role in necrotic and apoptotic cell death pathways induced by cardiac ischaemia/reperfusion injury. PKC (protein kinase C) ε plays a critical role in cardioprotect...
متن کاملCardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury.
AIMS Emerging evidence indicates that nuclear receptors play a critical regulatory role in cardiovascular physiology/pathology. Recently, farnesoid-X-receptor (FXR), a member of the metabolic nuclear receptor superfamily, has been demonstrated to be expressed in vascular cells, with important roles in vascular physiology/pathology. However, the potential cardiac function of FXR remains unclear....
متن کاملThe role of hexokinase in cardioprotection – mechanism and potential for translation
Mitochondrial permeability transition pore (mPTP) opening plays a critical role in cardiac reperfusion injury and its prevention is cardioprotective. Tumour cell mitochondria usually have high levels of hexokinase isoform 2 (HK2) bound to their outer mitochondrial membranes (OMM) and HK2 binding to heart mitochondria has also been implicated in resistance to reperfusion injury. HK2 dissociates ...
متن کاملPreserved cardiac mitochondrial function and reduced ischaemia/reperfusion injury afforded by chronic continuous hypoxia: role of opioid receptors.
Chronic continuous normobaric hypoxia (CNH) increases cardiac tolerance to acute ischaemia/reperfusion injury. The objective of this study was to find out whether the cardioprotective effect of CNH mediated by opioid receptors is associated with preservation of mitochondrial function. Rats were adapted to CNH (12% oxygen) for 3 weeks. Isolated perfused hearts were subjected to 45 min of global ...
متن کامل